上传源码

零基础系统深入学习机器学习推荐课程

  • 下载权限:30 金币 ( 年度或终身会员免币下载 )
  • 浏览次数:0
  • 上传会员:test1
  • 最后更新:2020-04-30 13:13:38

注意:本站无任何技术支持,源码只做测试学习所用,勿用于商业行为

零基础系统深入学习机器学习推荐课程教程下载。本教程适合人工智能初学者;想系统学习机器学习,了解机器学习流行模型的研发人员;希望查漏补缺,巩固机器学习基础的从业者;对机器学习有浓厚兴趣的其他相关人员。备注:本课程为音频+文字课程。
第一个模块是机器学习概观,简介机器学习中超脱于详细模型和技巧之上的一些共性问题,将从概率的两大派别开始。众所周知,概率在机器学习中扮演着内核角色,而频率学派与贝叶斯学派对概率迥异的认知也将机器学习一分为二,发展出两套完全不同的理论体系。正所谓兼听则明偏听则暗,了解机器学习时应该看到这同一枚硬币的两面,以获得完美的认知。除此之外,本模块还涵盖了计算学习等机器学习的理论问题,以及关于模型和特征的一些实验模板。
第二个模块将讨论频率学派发展出的机器学习理论——统计学习。统计机器学习的内核是数据,它既从数据中来,利用不同的模型去拟合数据背后的规律;也到数据中去,用拟合出的规律去推断和预测未知的结果。统计学习中最基础的模型是线性回归,几乎所有其他模型都是从不同角度对线性回归模型做出的扩展与修正。因此,在这个模块中,我将以线性模型为主线,和你一起浏览它的万千变化,观察从简单线性回归到复杂深度网络的发展历程。
第三个模块将讨论贝叶斯学派发展出的机器学习理论——符号学习,也就是概率图模型。和使用数据的统计学习相比,使用关系的图模型更多地代表了因果推理的发展方向。贝叶斯主义也需要计算待学习对象的概率分布,但它利用的不是海量的详细数据,而是变量之间的相关关系、每个变量的先验分布和大量复杂的积分方法。在这个模块中,我将围绕概率图模型中的表示、推断、学习三大问题展开简介,认识贝叶斯面纱下的机器学习。
备注:本课程为音频+文字课程。

零基础系统深入学习机器学习推荐课程
  • 本站发表的文章及附件仅限于学习和研究目的,不得将上述内容用于商业或非法用途,否则后果用户自负。
  • 本站信息来自网络,版权争议与本站无关。您必须在下载的24小时之内,从电脑或移动设备中删除上述内容。
  • 如果您喜欢该程序或正适用,请支持正版,购买注册后将得到更好的服务。如有侵权,请使用邮件联系我们。
  • 提示:喜欢这个作品给它点个红心和关注吧
    test1

    test1

    img

    零基础系统深入学习机器学习推荐课程

    下载权限
    30 金币